Integrity of Cooperative Perception

Antoine Lima, Véronique Cherfaoui, Philippe Bonnifait

Introduction


Overview of a PhD defended in May 2023



1. T2TF

2. Detectability

3. Trust

1. Track to Track Fusion

Problem


Information loops


Spatio-temporal dependency

\[\neq\]

Traditional Kalman filtering

State of the art



flowchart TD
  A(T2TF) --> B(Explicit Correlation Representation)
  A --> C(Generic Methods)
  C --> D(Probability Hypothesis Density)
  C --> E(Covariance Intersection Filter)

State of the art



flowchart TD
  A(T2TF) --> B(Explicit Correlations)
  A --> C(Generic)
  C --> D(PHD)
  C --> E(CIF)

  style E fill:#517dc9,stroke:#2f5597,stroke-width:2px,color:#f9f9f9,font-weight:bold

CI : Weighted Kalman Update


\[ \small \mathbf{P}^{-1} = \color{green}{w}\mathbf{P}^{-1} + \color{green}{(1-w)}\mathbf{R}^{-1} \]

Consistent but hard to converge

State of the art



flowchart TD
  A(T2TF) --> B(Explicit Correlations)
  A --> C(Generic)
  C --> D(PHD)
  C --> E(CIF)
  E --> F(KF/CIF)
  E --> G(SCIF)

  style E fill:#517dc9,stroke:#2f5597,stroke-width:2px,color:#f9f9f9,font-weight:bold
  style F fill:#C8E6C9,stroke:#2E7D32,stroke-width:2px
  style G fill:#C8E6C9,stroke:#2E7D32,stroke-width:2px

CI : Weighted Kalman Update


\[ \small \mathbf{P}^{-1} = \color{green}{w}\mathbf{P}^{-1} + \color{green}{(1-w)}\mathbf{R}^{-1} \]

Consistent but hard to converge

Split CIF


Promising

Harder tuning

No consistency guarantee

* artist’s rendition

2. Detectability

Concept

Like occupancy grids..


Models:

  • Absence of objects
  • Presence of objects

.. with a twist


Models:

  • Absence of objects
  • Possibility of seing objects

Example

Usage

Better estimate target existence \(p(\exists)\)..


.. and building trust

3. Trust

Problem


What should we do


Risk missing an object?

Risk stopping on nothing?


Depends on how much we trust the other

Proposal

Joint confirmation & Misbehavior detection


\[ \Omega^\mathcal{T} = \{T, \not{T}\} \]

\(m_j(\{T\})\): \(j\) can be trusted

\(m_j(\{\not{T}\})\): \(j\) cannot be trusted

\(m_j(\{T,\not{T}\})\): \(j\) is undecidable


Estimated over time by accumulating pieces of evidence

Examples

Object Similarity


Size Coherency


Tree Fusion


%%{
  init: {
    'theme': 'neutral',
    'themeVariables': {
      'fontSize': '30px'
    }
  }
}%%
flowchart BT
  obde(Object\n Detectability) --> cohe(Coherency)
  atco(Attribute\n Coherency) --> cohe
  spco(Spatial\n Coherency) --> cohe
  hist(History) --> cons(Consistency)
  obsi(Object\n Similarity) --> conf(Confirmation)
  obdi(Object\n Dissimilarity) --> conf
  ofin(Object - FS\n Incosistencies) --> conf
  fssi(FS\n Similarity) --> conf
  cohe --> obse(Trust)
  cons --> obse
  conf --> obse

  style obde fill:#b8545000,stroke-width:0px,text-align:center
  style atco fill:#b8545000,stroke-width:0px,text-align:center
  style spco fill:#b8545000,stroke-width:0px,text-align:center
  style hist fill:#b8545000,stroke-width:0px,text-align:center
  style obsi fill:#82b36600,stroke-width:0px,text-align:center
  style obdi fill:#b8545000,stroke-width:0px,text-align:center
  style ofin fill:#b8545000,stroke-width:0px,text-align:center
  style fssi fill:#82b36600,stroke-width:0px,text-align:center
  style cohe fill:#b8545000,stroke-width:0px,text-align:center
  style cons fill:#b8545000,stroke-width:0px,text-align:center
  style conf fill:#d79b0000,stroke-width:0px,text-align:center
  style obse fill:#d79b0000,stroke-width:0px,text-align:center

Results



Rightfully detects errors then takes time returning to normal

Use: Discounting


Example of trust tree

Experiments


Thank you! Questions?

Datasets