flowchart TD A(T2TF) --> B(Explicit Correlation Representation) A --> C(Generic Methods) C --> D(Probability Hypothesis Density) C --> E(Covariance Intersection Filter)
Overview of a PhD defended in May 2023
1. T2TF
2. Detectability
3. Trust
Information loops
Spatio-temporal dependency
\[\neq\]
Traditional Kalman filtering
flowchart TD A(T2TF) --> B(Explicit Correlation Representation) A --> C(Generic Methods) C --> D(Probability Hypothesis Density) C --> E(Covariance Intersection Filter)
flowchart TD A(T2TF) --> B(Explicit Correlations) A --> C(Generic) C --> D(PHD) C --> E(CIF) style E fill:#517dc9,stroke:#2f5597,stroke-width:2px,color:#f9f9f9,font-weight:bold
CI : Weighted Kalman Update
\[ \small \mathbf{P}^{-1} = \color{green}{w}\mathbf{P}^{-1} + \color{green}{(1-w)}\mathbf{R}^{-1} \]
Consistent but hard to converge
flowchart TD A(T2TF) --> B(Explicit Correlations) A --> C(Generic) C --> D(PHD) C --> E(CIF) E --> F(KF/CIF) E --> G(SCIF) style E fill:#517dc9,stroke:#2f5597,stroke-width:2px,color:#f9f9f9,font-weight:bold style F fill:#C8E6C9,stroke:#2E7D32,stroke-width:2px style G fill:#C8E6C9,stroke:#2E7D32,stroke-width:2px
CI : Weighted Kalman Update
\[ \small \mathbf{P}^{-1} = \color{green}{w}\mathbf{P}^{-1} + \color{green}{(1-w)}\mathbf{R}^{-1} \]
Consistent but hard to converge
Promising
Harder tuning
No consistency guarantee
Like occupancy grids..
Models:
.. with a twist
Models:
Better estimate target existence \(p(\exists)\)..
.. and building trust
What should we do
Risk missing an object?
Risk stopping on nothing?
Depends on how much we trust the other
Joint confirmation & Misbehavior detection
\[ \Omega^\mathcal{T} = \{T, \not{T}\} \]
\(m_j(\{T\})\): \(j\) can be trusted
\(m_j(\{\not{T}\})\): \(j\) cannot be trusted
\(m_j(\{T,\not{T}\})\): \(j\) is undecidable
Estimated over time by accumulating pieces of evidence
Object Similarity
Size Coherency
%%{ init: { 'theme': 'neutral', 'themeVariables': { 'fontSize': '30px' } } }%% flowchart BT obde(Object\n Detectability) --> cohe(Coherency) atco(Attribute\n Coherency) --> cohe spco(Spatial\n Coherency) --> cohe hist(History) --> cons(Consistency) obsi(Object\n Similarity) --> conf(Confirmation) obdi(Object\n Dissimilarity) --> conf ofin(Object - FS\n Incosistencies) --> conf fssi(FS\n Similarity) --> conf cohe --> obse(Trust) cons --> obse conf --> obse style obde fill:#b8545000,stroke-width:0px,text-align:center style atco fill:#b8545000,stroke-width:0px,text-align:center style spco fill:#b8545000,stroke-width:0px,text-align:center style hist fill:#b8545000,stroke-width:0px,text-align:center style obsi fill:#82b36600,stroke-width:0px,text-align:center style obdi fill:#b8545000,stroke-width:0px,text-align:center style ofin fill:#b8545000,stroke-width:0px,text-align:center style fssi fill:#82b36600,stroke-width:0px,text-align:center style cohe fill:#b8545000,stroke-width:0px,text-align:center style cons fill:#b8545000,stroke-width:0px,text-align:center style conf fill:#d79b0000,stroke-width:0px,text-align:center style obse fill:#d79b0000,stroke-width:0px,text-align:center
Rightfully detects errors then takes time returning to normal
Use: Discounting
Workshop Véhicule Intelligent - Integrity of Cooperative Perception